This chapter explains how to develop an Automation Model using the GUI Editor, where logic corresponding to a service is visually represented as a graphical diagram. Additionally, it covers how to develop automation models using various services that collect and process data.
The development process for an X-UP Model consists of the following steps
Develop the model using the X-UP Builder.
Test the developed model in the X-UP Builder.
Deploy the model to the X-UP Server using the deploy function in the X-UP Builder.
Test the deployed model using the X-UP Test Web Page.
In an Automation Model, data is acquired from a data source using an Invoke function.
Invoke can process data in modular units, and multiple Invokes can be combined to build a model.
This chapter covers the following topics.
Developing a model using SAP RFC Invoke
Developing a model using Select Invoke
Developing a model using Modify Invoke
Developing a model using Procedure Invoke
Developing a model using OpenAPI Invoke
Developing a model using X-UP Invoke
Developing a model using Visual COBOL Invoke
Processing data using DataSet Row Loop Function
Processing data using Merge Function
Processing data using Quick Merge Function
Processing data using XML Parser Function
Developing a Model Using SAP RFC Invoke
This section explains the process of developing a model using SAP RFC Function in Automation Model.
The SAP RFC Invoke development steps in the Automation Model are as follows.
Create an X-UP Project
Create an Automation Model and SAP RFC Invoke
Create a Data Source and Configure Properties
Test the Invoke
Test the Model
Creating an X-UP Project
Open the New X-UP Project Wizard by selecting [File > New > X-UP Project] from the menu.
In the New X-UP Project Wizard, enter the desired project name in the Project name field and click the Finish button.
Verify that the X-UP project has been created in the X-UP Explorer as shown below.
Creating an Automation Model and Generating an SAP RFC Invoke
Select [File > New > X-UP Automation Model] to launch the New Model Wizard.
In the New Model Wizard, enter the desired model name in the Model Name field and click the OK button.
After completing the New Model Wizard, the following screen will appear.
From the Palette, select SAP RFC under Invoke and click on the editor to generate the SAP RFC Invoke.
Creating a Data Source and Configuring Properties
Double-click the created SAP RFC Invoke(1) or click the ‘Properties’ tab and then click the ‘SAP RFC icon’[
](2) to launch the wizard.
In the Invoke SAP RFC Wizard, click create new DataSource [
]
On the New DataSource page, define a new data source. Enter the required values in each field and click the Test Connection button to verify the connection.
After confirming the connection, click the Finish button.
Field Name | Field Value |
---|---|
Name | ‘SAP RFC’ 데이터소스 이름으로 다른 데이터소스 이름과 중복되지 않는 값을 입력합니다. |
ID | SAP RFC 서버 접속 ID |
PASSWORD | SAP RFC 서버 접속 PASSWORD |
Client | 로그인 계정에서 사용할 client 정보 |
Host Name | 서버의 IP |
System Number | 로그인 계정에서 사용 할 System Number 정보 |
Repository | 로그인 계정에서 사용할 Repository 정보 |
Charset | 사용할 charset |
Timeout | 서버와의 접속을 유지할 최대 시간 |
Select SAP RFC as the DataSource, then click the Get Function List button [
] to retrieve the list of functions registered on the server.
Use wildcard (*) search to find functions within the group.
Select(1) the desired function from the retrieved function list, then review (2) the function’s input parameters and output parameters.
The SAP RFC parameters will be converted into X-UP parameters (3).
Click the Test button(4)to open the Define Input Value Wizard, configure input parameter values, and click the Finish button to verify the output data.
Click OK to confirm that the input and output parameters have been successfully created.
Invoke 테스트하기
This is the created SAP RFC Invoke. Based on the test results of the Invoke, the input parameters and output parameters will be generated.
Select the InvokeInfo of the SAP RFC Invoke in the Properties and click [
] 를 클릭하여 테스트를 진행합니다.
When the "Define Input Value" wizard appears, input the test values you set during the Properties configuration and click the Finish button.
If the test is successfully completed, you can check the results in the Test Result.
Testing the Model
When you right-click in the model editor, a popup menu will appear. From the popup menu, select Test to test the model.
Once the test is complete, the output of the model will be shown in the Result ParameterSet view.
Click the Test button to display the results in the Result ParameterSet.
Select Invoke를 이용한 모델 개발하기
이 절에서는 Automation 모델을 이용하여 데이터베이스로부터 Select 쿼리로 데이터를 획득하는 개발방법에 대하여 설명합니다.
이 절에서 사용한 데이터베이스 테이블 정보는 Sample DB Table Creation Script를 참조하십시오.
이 절에서 설명하는 Automation 모델의 Select Invoke 개발단계는 다음과 같습니다.
X-UP 프로젝트 생성하기
Automation 모델을 생성 및 Select Invoke 생성하기
입력 파라메터 설정 및 Properties 설정하기(SQL 변경)
Invoke 테스트하기
모델 테스트하기
X-UP 프로젝트 생성하기
[File > New > X-UP Project] 메뉴를 선택하여 New X-UP Project Wizard를 실행합니다.
New X-UP Project Wizard에서 Project name 필드에 원하는 프로젝트 이름을 입력하고 ‘Finish’ 버튼을 클릭합니다.
X-UP Explorer에 아래와 같이 X-UP 프로젝트가 생성된 것을 확인합니다.
Creating an Automation Model and Select Invoke
Select the [File > New > X-UP Automation Model] menu to launch the New Model Wizard.
In the New Model Wizard, enter the desired model name in the Model Name field and click OK.
Once the New Model Wizard is completed, the screen below will appear.
In the X-UP DataSource view on the right side of the screen, select new DataSource to run the Wizard.
In the New DataSource wizard, define the new data source. Enter the required values in each field and click the Test Connection button to verify the connection to the DataSource.
After confirming the connection, click the Finish button.
Field Name | Field Value |
---|---|
Name | 'DB_ORACLE' – Enter a unique name for the data source that does not conflict with other data source names. |
DBMS | 'Oracle' – Select the database system to be used. This example uses 'Oracle'. |
Connection URL | Enter the JDBC Connection String. |
User ID | Enter the database user ID. |
User PW | Enter the database user password. |
Database | Enter the name of the database to be used. |
Charset | 'UTF-8' – Enter the value for character encoding. |
Timeout (msec) | '10000' – The maximum time to maintain a connection to the server. |
ConnectionPool MaxActive | '30' – The maximum number of active connections allowed. |
ConnectionPool MaxIdle | '30' – The maximum number of idle connections allowed. |
ConnectionPool maxWait | '5000' – The maximum time to wait for a connection to open. |
In the X-UP DataSource view, select the DataSource [
]and retrieve the table list.
From the retrieved table list, select the ADDRESS_BOOK table and drag and drop it into the editor.
Choose Select Invoke from either Select Invoke or Modify Invoke to create a Select Invoke.
Alternatively, you can select Select Invoke from the Palette and click the editor to create the Select Invoke.
The generated Select Invoke will have a DataSet as the output parameter by default.
The generated SQL query will be a Select SQL that retrieves all columns without a WHERE clause.
Setting Input Parameters and Properties (SQL Modification)
In this step, the input parameters are defined and the properties necessary to retrieve data from the data source are configured.
If a dataset is set as an input parameter, the value of the first row will be set.
Select the DataSet from the Palette (1)and click the editor(2)to create the dataset.
The default name for the created dataset is ‘dataset + index.’ Change the name and alias to IN_DS(3)
Connect the modified dataset to the Select Invoke(2) using Connect(1) from the Palette
Once connected, the dataset icon will turn blue and will be required as input parameters.
In the Properties tab, under the ‘InOut’ section, you can confirm that it has been changed to ‘in’(3)
The dataset output is renamed to OUT_DS, with the alias and name modified, and set to ‘out’.
Usage of dataset parameters with distinction between Alias and Name:
Alias : Defines a user-friendly alias. Korean characters can be used.
Name : Defines the name of the dataset. It should be defined in English without conflicts with other parameters in the editor.
Although you will see the alias in the editor, it is the Name that is actually distinguished during Java code and source generation.
Select the IN_DS dataset, go to Properties, and choose ‘Schema’ to add an ID and define the data type.
Double-click the Select Invoke to automatically modify the generated SQL. In this example, the ID from IN_DS is used as an input variable to query the ADDRESS_BOOK table. If the ID is not null, only the record with the provided ID will be queried.
$r_title(Before modification) select ID, NAME, COMPANY, EMAIL, PHONE, BIRTHDAY, NOTES from MIMASHUP.ADDRESS_BOOK
$r_title(After modification) select ID, NAME, COMPANY, EMAIL, PHONE, BIRTHDAY, NOTES from ADDRESS_BOOK <dynamic prepend="where"> <isNotNull property="IN_DS.ID"> ID = #IN_DS.ID# </isNotNull> </dynamic>
Invoke 테스트하기
Click the preview button[
] at the top right of the SQL view shown in the Properties InvokeInfo of the Select Invoke. In the Define Test Value window, add a row, input ‘5’, and click the ‘Finish’ button.
The test results will be displayed in the Result ParameterSet view.
Model Testing
Right-click in the model editor to open the popup menu. Select "Test" from the menu to test the model.
After the test is complete, the model's output will be shown in the Result ParameterSet view.
At the bottom of the Result ParameterSet view, there are tabs for Parameters and DataSets. You can confirm that a dataset named ‘OUT_DS’ exists as the output parameter.
Developing a Model Using Modify Invoke
This section explains the development method for modifying data in a database using an Automation model.
Please refer to the Sample DB Table Creation Script for the database table information used in this section.
The development steps for the Modify Invoke Automation model described in this section are as follows.
Create an X-UP project
Create an Automation model and Select Invoke
Set input parameters and configure properties
Test the Invoke
Test the model
X-UP 프로젝트 생성하기
[File > New > X-UP Project] 메뉴를 선택하여 New X-UP Project Wizard를 실행합니다.
New X-UP Project Wizard에서 Project name 필드에 원하는 프로젝트 이름을 입력하고 ‘Finish’ 버튼을 클릭합니다.
X-UP Explorer에 아래와 같이 X-UP 프로젝트가 생성된 것을 확인합니다.
Creating an Automation Model and Modify Invoke
Select [File > New > X-UP Automation Model] to launch the New Model Wizard.
In the New Model Wizard, enter the desired model name in the Model Name field and click the OK button.
After completing the New Model Wizard, the screen below will appear.
화면 우측의 X-UP DataSource 뷰에서 new DataSource를 선택해 Wizard를 실행합니다.
New DataSource 위자드에서 새로운 데이터소스를 정의합니다. 아래와 같이 각 필드 값을 입력한 후 ‘Test Connection’버튼을 선택하여 DataSource와 연결이 정상적으로 맺어지는지 확인합니다.
Connection 확인 후에 ‘Finish’ 버튼을 클릭합니다.
Field Name | Field Value |
---|---|
Name | ‘DB_ORACLE’ 데이터소스 이름으로 다른 데이터소스 이름과 중복되지 않는 값을 입력합니다. |
DBMS | 사용할 데이터베이스 시스템을 선택합니다. 이 예제는 ‘Oracle’를 사용합니다. |
Connection URL | JDBC Connection String을 입력합니다. |
User ID | 데이터베이스 사용자 ID를 입력합니다. |
User PW | 데이터베이스 사용자 암호를 입력합니다. |
Database | 사용할 데이터베이스의 이름을 입력합니다. |
Charset | ‘UTF-8’ 문자 인코딩에 대한 값을 입력합니다. |
Timeout(msec) | ‘10000’ 서버와의 접속을 유지할 최대 시간 |
ConnectionPool MaxActive | ‘30’ 사용하는 커넥션 최대수 |
ConnectionPool MaxIdle | ‘30’ 사용하지 않는 커넥션의 최대수 |
ConnectionPool maxWait | ‘5000’ 커넥션을 열기 위해 최대 기다리는 시간 |
In the X-UP DataSource view, select the DataSource[
]to retrieve the table list.
From the retrieved table list, select the 'ADDRESS_BOOK' table and drag-and-drop it into the editor.
From either Select Invoke or Modify Invoke, choose Modify Invoke to generate the Modify Invoke.
Alternatively, you can select Modify Invoke from the Palette's Invoke section and click the editor to create the Modify Invoke.fy Invoke를 생성할 수 있습니다.
When creating from the X-UP DataSource view, a default query for CUD operations (Create, Update, Delete) on the table will be automatically generated.
Upon creating Modify Invoke, a wizard will appear, allowing you to select the initial columns.
Click the 'Select All' button and then click the 'OK' button. The generated Modify Invoke will, by default, have an input dataset and output dataset as parameters.
Configuring Input Parameters and Setting Properties
Click the input dataset and select 'General' under Properties to change the name and alias to 'IN_DS'.
When changing the name of the input dataset, the dataset name bound to the query will also be updated.
If Modify Invoke was created in the left Palette, manually create the input parameters (as shown in image 1 below) and specify the schema for the input parameter 'IN_DS'. Click the Import button (as shown in image 3 below).
For dataset column settings, click the 'Add' button[
] to manually enter the columns or click the 'Import' button to retrieve column information from the database table, another X-UP model, or an XML file.
In the Import Dataset Schema wizard, select the schema of the 'ADDRESS_BOOK' table from the 'DB_ORACLE' data source.
Import Source | Description |
---|---|
DB Table | Fetches column information from a database table. At least one DB data source must be set up in the current X-UP project to use this option. |
X-UP Model | Fetches column information using the output dataset from another model that exists in the current X-UP project. |
XML File | Fetches column information from an XML file. The column information must be in the dataset schema format provided by Nexaweb to be usable. |
After changing the name of the input dataset, double-click Modify Invoke. In the Invoke Modify SQL popup, the Target DataSet combo box will display the types of datasets in the input parameters. Here, select 'IN_DS'. You will see that the Insert/Update/Delete queries are automatically populated.
If the Target DataSet is not selected, the delete, insert, and update SQL statements will be executed in sequence, one time each, by default.
Enable Surround CDATA
In the Invoke Modify SQL window, the option "Enable Surround CDATA" applies CDATA processing only to the selected queries. For example, if only the Insert SQL is selected, CDATA processing will be applied only to the Insert query. If all options are selected, CDATA processing will be applied to all queries during execution.
Invoke Testing
Click the preview button[
] on the top-right corner of the SQL view in the Modify Invoke's Properties InvokeInfo to start the test.
When the Define Input Value wizard is generated, input the data to be used for the Modify Invoke test.
Click the Add button[
] to enter the data.
After entering the data, click the Finish button.
The Action field for transaction processing of the entered row is explained below.
Action | Description |
---|---|
INSERT | Rows with 'INSERT' set will be added to the database table. |
UPDATE | Rows with 'UPDATE' set will find and update the matching records in the table. A matching record is defined as one where the value in the primary key column matches the value in the input dataset. Therefore, 'UPDATE' can only be performed on tables with one or more primary key columns set. |
DELETE | Rows with 'DELETE' set will find and delete the matching records in the table. A matching record is defined as one where the value in the primary key column matches the value in the input dataset. Therefore, 'DELETE' can only be performed on tables with one or more primary key columns set. |
NORMAL | Used only for input data and does not participate in database transactions. |
After the test is successfully completed, the result can be viewed in the Result ParameterSet view.
Model Testing
Developing a Model Using Procedure Invoke
This section explains how to develop a model that calls a database procedure or function using an Automation model.
The database table information used in this section can be found in the Sample DB Table Creation Script.
The steps for developing an Automation model using Procedure Invoke are as follows.
Create an X-UP Project
Create an Automation Model and Procedure Invoke
Test the Invoke
Test the Model
X-UP 프로젝트 생성하기
[File > New > X-UP Project] 메뉴를 선택하여 New X-UP Project Wizard를 실행합니다.
New X-UP Project Wizard에서 Project name 필드에 원하는 프로젝트 이름을 입력하고 ‘Finish’ 버튼을 클릭합니다.
X-UP Explorer에 아래와 같이 X-UP 프로젝트가 생성된 것을 확인합니다.
Creating an Automation Model and Procedure Invoke
Select [File > New > X-UP Automation Model] from the menu to launch the New Model Wizard.
In the New Model Wizard, enter the desired model name in the Model Name field and click the OK button.
After completing the New Model Wizard, the screen shown below will appear.
화면 우측의 X-UP DataSource 뷰에서 new DataSource를 선택해 Wizard를 실행합니다.
New DataSource 위자드에서 새로운 데이터소스를 정의합니다. 아래와 같이 각 필드 값을 입력한 후 ‘Test Connection’버튼을 선택하여 DataSource와 연결이 정상적으로 맺어지는지 확인합니다.
Connection 확인 후에 ‘Finish’ 버튼을 클릭합니다.
Field Name | Field Value |
---|---|
Name | ‘DB_ORACLE’ 데이터소스 이름으로 다른 데이터소스 이름과 중복되지 않는 값을 입력합니다. |
DBMS | 사용할 데이터베이스 시스템을 선택합니다. 이 예제는 ‘Oracle’를 사용합니다. |
Connection URL | JDBC Connection String을 입력합니다. |
User ID | 데이터베이스 사용자 ID를 입력합니다. |
User PW | 데이터베이스 사용자 암호를 입력합니다. |
Database | 사용할 데이터베이스의 이름을 입력합니다. |
Charset | ‘UTF-8’ 문자 인코딩에 대한 값을 입력합니다. |
Timeout(msec) | ‘10000’ 서버와의 접속을 유지할 최대 시간 |
ConnectionPool MaxActive | ‘30’ 사용하는 커넥션 최대수 |
ConnectionPool MaxIdle | ‘30’ 사용하지 않는 커넥션의 최대수 |
ConnectionPool maxWait | ‘5000’ 커넥션을 열기 위해 최대 기다리는 시간 |
In the X-UP DataSource view, select a DataSource [
](1) to retrieve the list of Procedures and Functions.
From the retrieved procedure list, select the desired procedure and drag it to the editor(2).
Alternatively, you can select Procedure Invoke (3) from the Palette's Invoke section and click the editor to create the Procedure Invoke
When selecting a procedure, the defined input and output parameters will appear. Parameters are displayed in order: input parameters first, followed by output parameters. A blue circle next to the parameter name indicates an input parameter, while a red circle indicates an output parameter.
In the wizard that appears, click the Test button.
The output values of the Procedure and Function cannot be confirmed until the test is performed (for MSSQL, MySQL). Therefore, after running the test and verifying the output results, the Procedure Invoke will be created.
Enter the values in the Define Input Value section and click the Finish button.
You can verify the output values after the procedure has been invoked.
Click the OK button to complete the configuration of the input and output parameters for the Procedure Invoke.
Invoke Testing
The created Procedure Invoke will generate input and output parameters based on the test results.
In the Properties of the Procedure Invoke, select InvokeInfo and click [
] to begin the test
When performing the test, enter the same values as when you clicked the Test button during the creation of the Procedure Invoke in "Create Automation Model and Procedure Invoke," and you will be able to check the results.
After a successful test, you can view the results in the Result ParameterSet view.
Model Testing
Developing a Model Using OpenApi Invoke
This section explains how to develop an OpenApi model using Apple Inc.'s Apple Store services.
Apple Store provides lists of new releases and popular rankings by category. The data is provided in an XML-based RSS format. X-UP Builder collects XML-formatted data and creates structured parameters.
The steps for developing an OpenApi model using OpenApi Invoke in this section are as follows.
Create an X-UP Project
Create an Automation Model and OpenApi Invoke
Create Data Source and Configure Properties
Test the Invoke
Test the Model
X-UP 프로젝트 생성하기
[File > New > X-UP Project] 메뉴를 선택하여 New X-UP Project Wizard를 실행합니다.
New X-UP Project Wizard에서 Project name 필드에 원하는 프로젝트 이름을 입력하고 ‘Finish’ 버튼을 클릭합니다.
X-UP Explorer에 아래와 같이 X-UP 프로젝트가 생성된 것을 확인합니다.
Creating an Automation Model and OpenApi Invoke
Select [File > New > X-UP Automation Model] menu to run the New Model Wizard
In the New Model Wizard, enter the desired model name in the Model Name field and click the OK button.
After completing the New Model Wizard, the screen will appear as shown below.
From the Palette, select OpenApi under the Invoke section and click on the editor to create the OpenApi Invoke.
Creating a Data Source and Configuring Properties
Double-click the created OpenApi Invoke(1) or click the InvokingInfo tab in the ‘Prooperties’ view(2) and click the ‘OpenApi icon’[
](3) to launch the wizard.
In the wizard, click Create new DataSource [
]
On the New DataSource page, define the new data source. After entering the field values as shown below, click the Test Connection button to check if the DataSource connection is established properly.
After confirming the connection, click the Finish button.
Field Name | Field Value |
---|---|
Name | ‘OPENAPI_APPLE’ The value for the data source name should be unique and not overlap with other data source names. |
HTTP URL | ‘https://itunes.apple.com/us/rss/’ Enter the Base URL for the OpenAPI service. |
If the OpenApi host requires HTTP Basic Authentication, enter valid values for Id and Password in the HTTP auth Info.
From the defined data source, select ‘OPENAPI_APPLE’.
Enter the appropriate Sub Path for the Base Path, then click the Test button. Example of the Sub Path: ‘topfreeapplications/limit=10/xml’.
If the service is successfully called, you will see the BODY and the actual HTTP Header response values as shown below.
When you click the OK button, you will see that the values verified during the test have been set as output parameters.
Unnecessary HTTP Header information can be removed, and the service will still work correctly.
Invoke Testing
The OpenApi Invoke has been created. Based on the test results of the Invoke, input and output parameters are generated.
Remove the unused HTTP header response values.
Select the ‘InvokeInfo’(2) tab in the Properties of the OpenApi Invoke(1) and click [
](3) to begin the test.
Once the test is successfully completed, the results can be viewed in the Result ParameterSet view. (In this example, if there are no input parameters, the output will be shown directly.)
Model Testing
Developing a Model Using X-UP Invoke
This section explains the process of using the Automation model to call an X-UP model deployed on a web application server.
For deployment methods, please refer to The internal link is invalid.
The development steps for the X-UP Invoke in the Automation model described in this section are as follows.
Create an X-UP Project
Create an Automation Model and X-UP Invoke
Create Data Source and Set Properties
Test the Invoke
Test the Model
X-UP 프로젝트 생성하기
[File > New > X-UP Project] 메뉴를 선택하여 New X-UP Project Wizard를 실행합니다.
New X-UP Project Wizard에서 Project name 필드에 원하는 프로젝트 이름을 입력하고 ‘Finish’ 버튼을 클릭합니다.
X-UP Explorer에 아래와 같이 X-UP 프로젝트가 생성된 것을 확인합니다.
Creating an Automation Model and X-UP Invoke
Select the [File > New > X-UP Automation Model] menu to launch the New Model Wizard.
In the New Model Wizard, enter the desired model name in the Model Name field and click the Finish button.
After the New Model Wizard is completed, the following screen will appear.
From the Palette, select X-UP under the Invoke section, and click the editor to create the X-UP Invoke.
To configure the created X-UP Invoke, either double-click it (1)or click the Properties tab and select the X-UP icon [
](2) to launch the wizard.
Creating a DataSource and Configuring Properties
In the X-UP Model List Wizard, click create new DataSource [
].
In the New DataSource Wizard, define the new data source by filling in the fields as shown below. Afterward, click the Test Connection button to ensure that the connection to the data source is established correctly.
After confirming the connection, click the Finish button.
Field Name | Field Value |
---|---|
Name | ‘XUP_REMOTE’ Enter a unique data source name that doesn’t conflict with other data sources. |
Description | ‘remote xup server’ A brief description of the data source. |
ServerURL | ‘http://host:port/xup’ URL of the server where the data source can be loaded. |
ServicePath | '/FrontControllerServlet.do' Set the Service Path. |
ServiceInfoPath | '/ServiceInfoServiceServlet.do' Set the Service Info Path. |
Charset | ‘UTF-8’ Specifies the character encoding. |
Timeout | ‘10000’ Maximum time to maintain the connection with the server. |
Parameters | Input the values for parameters to be passed. |
Ensure that the data source is properly set to XUP_REMOTE.
1Select the domain and model you wish to call.
2 You can view the input and output parameters for the model.
3 Click the OK button to exit the wizard.
After clicking OK, you can confirm that the input and output parameters have been created.
Invoke Testing
Select ‘InvokeInfo’ in the Properties of the X-UP Invoke and click[
] to perform the test.
Once the test is successfully completed, you can check the results in the Result ParameterSet view.
Model Testing
Processing Data Using the DataSet Row Loop Function
This section explains the DataSet Row Loop Function, which allows for executing business logic repetitively for each row in a dataset.
The example provided utilizes SAP RFC Invoke to retrieve a FLIGHT LIST and processes it into a new dataset by filtering data based on specific conditions.
Development Steps Using the DataSetRowLoop Function.
Create an X-UP Project
Create an Automation Model
Implement SAP RFC logic for input parameters
Create a DataSetRowLoop function and add an event
Use the UserMethod Function to define output parameters
Test the Function
Test the Model
X-UP 프로젝트 생성하기
[File > New > X-UP Project] 메뉴를 선택하여 New X-UP Project Wizard를 실행합니다.
New X-UP Project Wizard에서 Project name 필드에 원하는 프로젝트 이름을 입력하고 ‘Finish’ 버튼을 클릭합니다.
X-UP Explorer에 아래와 같이 X-UP 프로젝트가 생성된 것을 확인합니다.
Creating an Automation Model
Run the New Model Wizard by selecting [File > New > X-UP Automation Model].
In the New Model Wizard, enter the desired Model Name in the corresponding field and click OK.
After completing the New Model Wizard, the following screen will appear.
Implementing SAP RFC Logic for Input Parameters
In the Palette, select "SAP RFC" under Invoke and click on the editor to create an SAP RFC Invoke.
생성 된 SAP RFC Invoke를(1) 더블클릭 하거나 ‘Properties’ 탭을 클릭하여 ‘SAP RFC icon’[
](2)을 클릭하면 위자드가 실행 됩니다.
Invoke SAP RFC 위자드에서 create new DataSource [
]를 클릭합니다.
New DataSource 페이지에서 새로운 데이터소스를 정의합니다. 아래와 같이 각 필드 값을 입력한 후 ‘Test Connection’ 버튼을 선택하여 DataSource와 연결이 정상적으로 맺어지는지 확인합니다.
Connection 확인 후에 ‘Finish’ 버튼을 클릭합니다.
Field Name | Field Value |
---|---|
Name | ‘SAP RFC’ 데이터소스 이름으로 다른 데이터소스 이름과 중복되지 않는 값을 입력합니다. |
ID | SAP RFC 서버 접속 ID |
PASSWORD | SAP RFC 서버 접속 PASSWORD |
Client | 로그인 계정에서 사용할 client 정보 |
Host Name | 서버의 IP |
System Number | 로그인 계정에서 사용 할 System Number 정보 |
Repository | 로그인 계정에서 사용할 Repository 정보 |
Charset | 사용할 charset |
Timeout | 서버와의 접속을 유지할 최대 시간 |
DataSource를 SAP RFC을 선택하고 get function list 버튼 [
] 을 클릭하여 서버에 등록된 Function 리스트를 호출 합니다.
그룹(function) 검색 시 * 검색이 가능 합니다.
검색된 function 리스트 중 호출하고자 하는 function을 선택(1) 하면 해당 function의 입력 파라메터와 출력 파라메터의 정보를 확인(2) 할 수 있습니다.
동시에 SAP RFC 파라메터 형태를 X-UP Parameter 형태(3)로 나타납니다.
Test 버튼(4)을 클릭하여 생성된 Define Input Value 위자드의 입력 파라메터의 값을 설정하고 ‘Finish’ 버튼을 클릭하여 정상적으로 데이터가 표시되는지 확인합니다.
OK 버튼을 클릭할 경우 입력 파라메터와 출력 파라메터가 생성된 것을 확인할 수 있습니다.
Creating and Adding Events to the DataSetRowLoop Function
In the Palette, select 'DataSetRowLoop' from the Function category and click on the editor to create a DataSetRowLoop function.
Use the Connect tool(1) to link the output parameter ‘FLIGHT_LIST1’ from the SAP RFC Invoke to the input parameter(2) of the DataSetRowLoop function.
Right-click on the DataSetRowLoop function, select "Add Event", and choose "loopEvent" to add an event.
Setting Output Parameters Using the UserMethod Function
Use Connect to link the automatically generated rowIndex and dataset parameters from the event's output to the input parameters of the UserMethod function.
To define the output parameter, select DataSet from the Palette, add it(1), and link it to the UserMethod function's output parameter(2).
Rename the newly created dataset to 'FILTERED_FLIGHT_LIST'.(3)
Modify the schema of FILTERED_FLIGHT_LIST as shown below.
Name | Type | Size |
---|---|---|
AIRLINE | string | 20 |
CONNECTIONID | int | 4 |
FLIGHTDATE | date | 8 |
Double-click the UserMethod function, navigate to the automatically generated logic class, enter the following source code, and save it.
If there is an error in the DataTypes section,
import com.nexacro.xapi.data.datatype.DataType.
public void userMethod(ParameterSet globalParameterSet, EuserMethodParameters eps) throws AutomationFailException { DataSet filteredDataSet = globalParameterSet.getDataSet("FILTERED_FLIGHT_LIST"); DataSet dataset = eps.getDataSet(); int month = (dataset.getDateTime(0, "FLIGHTDATE").getMonth()); // data filter if(month == 4) { int row = filteredDataSet.newRow(); filteredDataSet .set(row, "AIRLINE", dataset.getString(0, "AIRLINE")); filteredDataSet .set(row, "CONNECTID", dataset.getInt(0, "CONNECTID")); filteredDataSet .set(row, "FLIGHTDATE", dataset.getString(0, "FLIGHTDATE")); } }
Model Testing
Use the Palette’s "Connect" tool to link the Start node with the SAP RFC Invoke, DataSetRowLoop function, and the End node.
Right-click anywhere in the Model Editor, and a popup menu will appear. Select "Test" from the menu to execute the model test.
Using the Quick Merge Function for Data Processing
This section explains the Quick Merge function, which fuses two datasets obtained from multiple Invoke or Function operations to create a new dataset.
The Quick Merge function merges datasets using Sort Merge or Hash Join algorithms.
Development Steps for Using Quick Merge Function
Create an X-UP Project
Create an Automation Model and Quick Merge Function
Generate Datasets to be Merged
Configure the Merge Logic
Test the Function
Test the Model
X-UP 프로젝트 생성하기
[File > New > X-UP Project] 메뉴를 선택하여 New X-UP Project Wizard를 실행합니다.
New X-UP Project Wizard에서 Project name 필드에 원하는 프로젝트 이름을 입력하고 ‘Finish’ 버튼을 클릭합니다.
X-UP Explorer에 아래와 같이 X-UP 프로젝트가 생성된 것을 확인합니다.
Creating an Automation Model and Quick Merge Function
Select [File > New > X-UP Automation Model] from the menu to launch the New Model Wizard.
In the New Model Wizard, enter the desired model name in the Model Name field and click the Finish button.
After the New Model Wizard is complete, the following screen will appear.
From the Palette, select the 'Quick Merge' function, then click on the editor to generate the Quick Merge function.
융합 할 데이터셋 생성하기
화면 Palette에서 ‘DataSet’을 선택 하여 에디터를 클릭 합니다.
생성된 데이터셋의 기본 명칭은 ‘dataset’ 입니다. 이름과 Alias를 DS_BOOK 으로 변경합니다.
Properties의 Schema에서 [
]를 클릭하여 Column 정보를 다음과 같이 추가 합니다.
Dataset Name | DS_BOOK | ||
Column Info | Name | Type | Size |
id | int | 10 | |
book_name | string | 255 | |
author | string | 255 |
DS_BOOK과 Merge 함수를 Palette의 Connect를 이용하여 연결합니다.
위와 같은 방법으로 DataSet 하나를 더 생성하여 이름과 Alias를 DS_AUTHOR로 변경합니다.
Properties의 Schema에서 [
]를 클릭하여 Column 정보를 다음과 같이 추가합니다.
Dataset Name | DS_AUTHOR | ||
Column Info | Name | Type | Size |
no | int | 10 | |
name | string | 255 | |
work | string | 255 |
DS_AUTHOR와 Merge 함수를 Palette의 Connect를 이용하여 연결합니다.
Configuring Merge Logic
Double-click the Quick Merge function(1) in the editor, or click the 'Properties' tab and select the 'Quick Merge icon'[
](2) to launch the wizard.
The two input datasets are automatically configured, with the 'Key Column' field set to 'book_name' for DS_BOOK and 'work' for DS_AUTHOR. Other fields are left with their default settings.
Click the Test button in the Quick Merge Wizard to test the merge logic.
Enter the following values in the Define Input Value wizard and click the Finish button.
DS_BOOK | |||
---|---|---|---|
Action | id | book_name | author |
INSERT | 10 | Java Development with Ant | Erik Hatcher |
INSERT | 20 | being digital | Nicholas Negroponte |
INSERT | 30 | Visualize This | Nathan Yau |
INSERT | 40 | Data Structures in C | Chun In-gook |
INSERT | 50 | HTML : the comlete reference | Thomas A |
INSERT | 60 | Search & Destroy: Why You Can't Trust Google Inc | Scott Cleland |
DS_AUTHOR | |||
---|---|---|---|
Action | id | name | work |
INSERT | 1 | Tomas A | HTML : the comlete reference |
INSERT | 2 | Tomas A | Global Sourcing Logistics |
INSERT | 3 | Tomas A | Elements Of Distribution Theory |
INSERT | 4 | Erik Hatcher | Java Development wth Ant |
INSERT | 5 | Erik Hatcher | Lucene in Action |
INSERT | 6 | Susan M. Weinschenk | Neuro Web Design: What makes them click?) |
INSERT | 7 | Scott Cleland | Search & Destroy: Why You Can't Trust Google Inc |
Function Testing
Based on the test results, output parameters will be generated.
Select the ‘InvokeInfo’ in the Properties of the Quick Merge function and click[
] to start the test.
When you enter the values and run the test, as in the 'Merge Logic Settings' section where the Test button in the wizard is selected, you will be able to see the results.
If the test is completed successfully, you can view the results in the Result ParameterSet view.
Invoke Testing
Data Processing Using the Merge Function
This section explains how to merge datasets obtained from multiple models to create a new dataset using the Merge function.
The steps involved in developing a merge model are as follows.
Create an X-UP project
Create an Automation model and the Merge function
Create datasets to be merged
Configure the merge logic
Test the merge function
Test the model
X-UP uses an internal memory database system for implementing the merge model. Therefore, when merging models that output large datasets, the memory and performance of the WAS hosting the X-UP server may be affected.
X-UP 프로젝트 생성하기
[File > New > X-UP Project] 메뉴를 선택하여 New X-UP Project Wizard를 실행합니다.
New X-UP Project Wizard에서 Project name 필드에 원하는 프로젝트 이름을 입력하고 ‘Finish’ 버튼을 클릭합니다.
X-UP Explorer에 아래와 같이 X-UP 프로젝트가 생성된 것을 확인합니다.
Creating an Automation Model and the Merge Function
Select the [File > New > X-UP Automation Model] menu to launch the New Model Wizard.
In the New Model Wizard, enter the model name in the Model Name field and click the 'Finish' button.
Once the New Model Wizard is completed, the following screen will appear.
Select 'Merge' from the Palette’s Functions, and click on the editor to create the Merge function.
Creating Datasets to Be Merged
From the Palette screen, select 'DataSet' and click on the editor.
The default name of the created dataset is ‘dataset’. Change the name and alias to ‘DS_BOOK’.
In the Properties panel, click [
] under Schema and add the column information as shown.
Dataset Name | DS_BOOK | ||
Column Info | Name | Type | Size |
id | int | 10 | |
book_name | string | 255 | |
author | string | 255 |
Use Palette's Connect to link DS_BOOK and the Merge function.
Create another dataset in the same way, and change the name and alias to ‘DS_AUTHOR’.
In the Properties panel, click[
] under Schema and add the column information as shown.
Dataset Name | DS_AUTHOR | ||
Column Info | Name | Type | Size |
no | int | 10 | |
name | string | 255 | |
work | string | 255 |
Use Palette's Connect to link DS_AUTHOR and the Merge function.
Setting Up the Merge Logic
Double-click the Merge function in the editor(1) or click the 'Properties' tab and click the 'Merge icon'[
](2) to launch the wizard.
Click ‘Create Default Merging SQL’ to generate the basic merge logic in the SQL editor.
Modify the merge logic in the SQL editor as shown below.
$r_title(Before modification) select a.id, a.book_name, a.author, b.no, b.name, b.work from DS_BOOK a, DS_AUTHOR b
$r_title(After modification) select a.id, a.book_name, a.author, b.no, b.name, b.work from DS_BOOK a, DS_AUTHOR b where a.book_name = b.work
Click the Test button in the SQL editor to test the merge logic.
Enter the following values in Define Input Value and click the ‘Finish’ button.
DS_BOOK | |||
---|---|---|---|
Action | id | book_name | author |
INSERT | 10 | Java Development with Ant | Erik Hatcher |
INSERT | 20 | being digital | Nicholas Negroponte |
INSERT | 30 | Visualize This | Nathan Yau |
INSERT | 40 | Data Structures in C | Chun In-gook |
INSERT | 50 | HTML : the comlete reference | Thomas A |
INSERT | 60 | Search & Destroy: Why You Can't Trust Google Inc | Scott Cleland |
DS_AUTHOR | |||
---|---|---|---|
Action | id | name | work |
INSERT | 1 | Tomas A | HTML : the comlete reference |
INSERT | 2 | Tomas A | Global Sourcing Logistics |
INSERT | 3 | Tomas A | Elements Of Distribution Theory |
INSERT | 4 | Erik Hatcher | Java Development wth Ant |
INSERT | 5 | Erik Hatcher | Lucene in Action |
INSERT | 6 | Susan M. Weinschenk | Neuro Web Design: What makes them click?) |
INSERT | 7 | Scott Cleland | Search & Destroy: Why You Can't Trust Google Inc |
Function Testing
Based on the test results, output parameters are generated.
Select 'InvokeInfo' in the Merge function's Properties and click[
] to initiate the test.
Similar to the test conducted in the 'Set Up Merge Logic' section, enter the same values in the SQL editor when clicking the Test button and proceed with the test to verify the results.
Once the test is successfully completed, you can check the results in the Result ParameterSet view.
Model Testing
Using the XML Parser Function for Data Processing
This section explains how to use the XML Parser Function to easily convert XML-formatted data into dataset formats or primitive types.
The XML used in the example is the Sample XML Required for Using XML Parser Function.
The development steps for the Automation model using the XML Parser in this section are as follows.
Create an X-UP Project
Create an Automation Model and the XML Parser
Define XML Parsing Rules
Test the Function
Test the Model
X-UP 프로젝트 생성하기
[File > New > X-UP Project] 메뉴를 선택하여 New X-UP Project Wizard를 실행합니다.
New X-UP Project Wizard에서 Project name 필드에 원하는 프로젝트 이름을 입력하고 ‘Finish’ 버튼을 클릭합니다.
X-UP Explorer에 아래와 같이 X-UP 프로젝트가 생성된 것을 확인합니다.
Creating an Automation Model and XML Parser Function
Select the [File > New > X-UP Automation Model] menu to run the New Model Wizard.
In the New Model Wizard, enter the desired model name in the Model Name field and click OK.
After the New Model Wizard is completed, the following screen will appear.
From the Palette under Function, select ‘XML Parser’, and click the editor to create the XML Parser function.
Defining the XML Parsing Rules
Double-click the XML Parser(1) or click on the ‘Properties’ tab, then click the ‘ParserInfo’ and select the ‘XML Parser icon’[
](2) to launch the XML Parser Wizard.
Copy the XML data from the Sample XML Required for Using XML Parser Function for input data.
Paste the XML string into the ‘XML Content’ area of the XML Parser Wizard.
The XML content will appear, and by clicking pretty view, it will display in a more readable format.
The ‘Parser Info’ section at the bottom will show the XML in a tree structure.
To parse the data, select the repeating ‘PLANT’(1) node in ParseInfo and drag(2) it into the Parse List.
Additionally, click the Add button[
](3) at the top left of the ‘Parse List’ to create a new entry.
Once added to the Parse List, the ‘XPath’, ‘Const column’, ‘Condition’, and ‘Option’ (4) tabs in Parse Info will be activated.
The selected node will automatically be assigned to XPath, and its child nodes will be included. This information will be converted into a dataset.
Field Name | Field Value |
---|---|
XPath | The ROOT XPath used to parse the actual XML. |
Const column | When the XPath selects repetitive nodes, you can specify a constant column in the dataset. |
Condition | Allows you to set conditions for the XPath. Only nodes that satisfy the condition will be included in the output. |
Options | Based on the corresponding 'Parse Info' of the 'Parse List', if there are duplicate node names, they will be combined into a single name using the specified delimiter. |
Additionally, you can drag and drop the repeating 'PLANT' node using XPath.
Click the ‘Test’ button(1) to preview the result in the ‘Preview’ section(2).
After clicking OK, an output parameter dataset named ‘PLANT’ will be created.
The schema of the dataset will be formed based on the names of the child nodes corresponding to the XPath.
Function Testing
Select 'ParserInfo' in the XML Parser's Properties and click[
] to start the test.
The 'Define Input Value' wizard will automatically input the XML used to define the parsing rules.
Click the 'Finish' button.
Once the test completes successfully, you can check the results in the Result ParameterSet view.
Model Testing
Developing a Model Using Visual Cobol Invoke
This section explains how to develop a model using Visual Cobol Invoke.
The steps for developing an Automation model using Visual Cobol Invoke are as follows.
Create an X-UP Project
Create an Automation Model and Visual Cobol Invoke
Create a Data Source and Configure Properties
Test the Invoke
Test the Model
Creating an X-UP Project
Select [File > New > X-UP Project] from the menu to launch the New X-UP Project Wizard.
In the New X-UP Project Wizard, enter the desired project name in the Project name field and click the Finish button.
Verify that the X-UP project has been created in the X-UP Explorer, as shown below.
Creating an Automation Model and Visual Cobol Invoke
Select [File > New > X-UP Automation Model] from the menu to launch the New Model Wizard.
In the New Model Wizard, enter the desired model name in the Model Name field and click the OK button.
After the New Model Wizard is complete, the following screen will appear.
In the Palette, select Visual Cobol under the Invoke section, and click the editor to create the Visual Cobol Invoke.
Creating a DataSource and Setting Properties
Double-click the created Visual Cobol Invoke (1) or click the Properties tab and click the Visual Cobol Icon[
](2) to launch the wizard.
In the Invoke Cobol Wizard, click create a new DataSource[
].
On the New DataSource page, define a new data source by entering the required values in the fields below. After that, click the Test Connection button to ensure the DataSource connection is established correctly.
After confirming the connection, click the Finish button.
Name | Description |
---|---|
Name | The name of the DataSource. |
Description | Description of the DataSource. |
Path | The path to the Visual Cobol resource to be used. |
Charset | The encoding (default: UTF-8). |
Database List | The list of registered database connections in the project. |
Cobol Code Preview | After registering the database, you can click the button to preview the generated Cobol code. |
Select Cobol as the DataSource and click the Select Method button[
].
Choose the desired Method from the class and click the OK button.
Click the Test button.
Set the input parameter values in the Define Input Value wizard and click the Finish button to confirm that the data is displayed correctly.
Check the test results.
Click the OK button.
You can now confirm that the Visual Cobol Invoke has been created successfully.
Invoke Testing
The created Visual Cobol Invoke is ready. Based on the test results, input parameters and output parameters are generated.
Select InvokeInfo in the Properties of the Visual Cobol Invoke, and click[
] to start the test.
When the Define Input Value wizard appears, enter the test values that were set during the Properties configuration and click the Finish button.
If the test is completed successfully, you can verify the results in the Test Result.
Model Testing
In the model editor, right-click to open the context menu. From the popup menu, select Test to run the model test.
Once the test is complete, the model's output will be displayed in the Result ParameterSet view.
Once the test is completed, the output of the model will be displayed in the Result ParameterSet view.
UserMethod 사용법
UserMethod의 사용법은 매우 무궁무진하기 때문에 대표적인 3가지 경우를 소개하겠습니다. 1. 다른 invoke를 UserMethod로 호출하기 2. session처리 예시 3. DatasetRowLoop와 UserMethod 같이 쓰기
1. 다른 invoke를 UserMethod로 호출하기
invoke들을 connection만으로 나타내기 힘들거나 복잡도가 높아 간단하게 실행시켜야 할 때 UserMethod를 통해 간소화할 수 있습니다.
invoke를 UserMethod에 선언하여 사용하기
UserMethod의 코드
public void userMethod(ParameterSet globalParameterSet) throws AutomationFailException { //dataset3의 rowCount 수를 가져옴 int rowCount = globalParameterSet.getDataSet("dataset3").getRowCount(); //rowCount에 따라 실행 시킬 invoke 설정 if(rowCount > 0) { // test_user() 실행 user(globalParameterSet); }else { // sqlite_sequence() 실행 sqlite_sequence(globalParameterSet); } }
2. session처리 예시
세션처리 예제
UserMethod의 코드
public void userMethod(ParameterSet globalParameterSet) throws AutomationFailException { // 사용자 세션 가져오기 UserSession userSession = getUserSession(); if (userSession != null) { String userId = (String) userSession.getAttribute("userId"); System.out.println("User ID: " + userId); } else { throw new AutomationFailException("User session is null."); } }
3. DatasetRowLoop와 UserMethod 같이 쓰기
이 예시에서는 DatasetRowLoop의 간단한 사용 방법 및 주의해야 할 점을 설명합니다.
test_user select invoke를 실행하여 dataset1
에 적재합니다. dataSetRowLoop
와 dataset1
을 연결 시켜 loopEvent생성합니다. userMethod
에서 dataset2
에 중복 적재 방지를 위한 clearData()설정을 합니다. loopEvent의 dataset
을 조건으로 활용하기 위해 select1 invoke
와 연결합니다. 해당 invoke실행 시 조회 결과를 dataset2
에 적재합니다. dataset2
의 데이터를 user1 invoke
에서 insert 수행
test_user invoke를 실행하여 dataset1에 저장할 내용
dataset1의 rowCount 수 만큼 실행될 select1 invoke의 쿼리
UserMethod의 코드
public void userMethod(ParameterSet globalParameterSet, EuserMethodParameters eps) throws AutomationFailException { //그림의 rowIndex를 가져옴 int rowIndex = eps.getRowIndex(); //rowIndex의 로그 System.out.println("Row index: " + rowIndex); //dataset2의 데이터 삭제 globalParameterSet.getDataSet("dataset2").clearData(); }
Model Test실행
Model Test 결과
주의사항
datasetRowLoop실행시 loopEvent에 걸린 invoke도 rowCount 만큼 실행됩니다. 이때 UserMethod로 적절한 clearData()처리를 하지 않으면 loop횟수만큼 dataset에 쌓이게 됩니다.
UserMethod에서 globalParameterSet.getDataSet("dataset2").clearData(); 처리하지 않았을 때 RESULT0 결과
eventLoop에 묶인 다른 invoke는 rowCount만큼 실행되면, 따로 clearData()처리가 없기 때문에 invoke와 연결된 dataset에 data가 쌓이게 됩니다. 이를 조절하기 위해서 적절한 clearData()처리를 해야합니다.